SNR-Based Progressive Learning of Deep Neural Network for Speech Enhancement

نویسندگان

  • Tian Gao
  • Jun Du
  • Li-Rong Dai
  • Chin-Hui Lee
چکیده

In this paper, we propose a novel progressive learning (PL) framework for deep neural network (DNN) based speech enhancement. It aims at decomposing the complicated regression problem of mapping noisy to clean speech into a series of subproblems for enhancing system performances and reducing model complexities. As an illustration, we design a signal-tonoise ratio (SNR) based PL architecture by guiding each hidden layer of the DNN to learn an intermediate target with gradual SNR gains explicitly. Furthermore, post-processing, with the rich set of information from the multiple learning targets, can further be conducted. Experimental results demonstrate that SNRbased progressive learning can effectively improve perceptual evaluation of speech quality and short-time objective intelligibility in low SNR environments, and reduce the model parameters by 50% when compared with the DNN baseline system. Moreover, when combined with post-processing, the proposed approach can be further improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNR-Aware Convolutional Neural Network Modeling for Speech Enhancement

This paper proposes a signal-to-noise-ratio (SNR) aware convolutional neural network (CNN) model for speech enhancement (SE). Because the CNN model can deal with local temporal-spectral structures of speech signals, it can effectively disentangle the speech and noise signals given the noisy speech signals. In order to enhance the generalization capability and accuracy, we propose two SNR-aware ...

متن کامل

Normalized Features for Improving the Generalization of DNN Based Speech Enhancement

Enhancing noisy speech is an important task to restore its quality and to improve its intelligibility. In traditional non-machine-learning (ML) based approaches the parameters required for noise reduction are estimated blindly from the noisy observation while the actual filter functions are derived analytically based on statistical assumptions. Even though such approaches generalize well to man...

متن کامل

Improving Deep Neural Network Based Speech Enhancement in Low SNR Environments

We propose a joint framework combining speech enhancement (SE) and voice activity detection (VAD) to increase the speech intelligibility in low signal-noise-ratio (SNR) environments. Deep Neural Networks (DNN) have recently been successfully adopted as a regression model in SE. Nonetheless, the performance in harsh environments is not always satisfactory because the noise energy is often domina...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016